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ABSTRACT

The spatial resolution of a hyperspectral image is often coarse because of the limitations
of the imaging hardware. Super-resolution reconstruction (SRR) is a promising signal
post-processing technique for hyperspectral image resolution enhancement. This paper
proposes a maximum a posteriori (MAP) based multi-frame super-resolution algorithm
for hyperspectral images. Principal component analysis (PCA) is utilized in both parts of
the proposed algorithm: motion estimation and image reconstruction. A simultaneous
motion estimation method with the first few principal components, which contain most
of the information of a hyperspectral image, is proposed to reduce computational load
and improve motion field accuracy. In the image reconstruction part, different image
resolution enhancement techniques are applied to different groups of components, to
reduce computational load and simultaneously remove noise. The proposed algorithm
is tested on both synthetic images and real image sequences. The experimental results

and comparative analyses verify the effectiveness of this algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral sensors acquire images in many contig-
uous and very narrow spectral bands, which enable
hyperspectral images to exploit fine spectral differences
between various materials of interest. Therefore, hyper-
spectral images can support improved target detection
and classification capabilities, relative to panchromatic
and multispectral images [1]. Nowadays, hyperspectral
images (HSI) are widely used in a variety of fields,
including agriculture, ecology, geology, medicine, meteor-
ology, and so on. However, a disadvantage of the hyper-
spectral image is that the spatial resolution is often
coarser than that of panchromatic and multispectral
images. This is an engineering tradeoff between spectral
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and spatial resolution, in order to maintain the high
sensitivity in the spectral domain when designing the
imaging hardware device. Therefore, it is necessary to
develop signal post-processing techniques, in order to
improve the spatial resolution of hyperspectral images.
Image super-resolution reconstruction (SRR) refers to a
signal processing technique which produces a high-reso-
lution (HR) image from a sequence of observed
low-resolution (LR) images that are noisy, blurred and
downsampled [2,3]. The SRR technique was first proposed
by Tsai and Huang [4] in the frequency domain. They
presented a formulation for the reconstruction of a HR
image from a set of undersampled, aliased and noise-free
LR images. Their method was then extended by Kim et al.
[5] to consider observation noise, as well as the effects of
spatial blurring. More recently, discrete cosine transform
(DCT) based [6] and wavelet transform-based [7,8] SRR
methods have also been proposed. Generally speaking,
the frequency domain approaches have the strength of
theoretical simplicity and high computational efficiency.
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However, these methods are not able to accommodate
spatial domain a priori knowledge, non-global transla-
tional motion models, or spatially varying degradation [2].
Consequently, many kinds of spatial domain approaches
have been developed to overcome the weaknesses of the
frequency domain approaches. Typical spatial domain
reconstruction methods include: non-uniform interpola-
tion [9], iterative back projection (IBP) [10], projection
onto convex sets (POCS) [11-13], Bayesian/maximum a
posteriori (MAP) [14-16], hybrid MAP/POCS [17], and
adaptive filtering [18]. Currently, image SRR has a variety
of applications, including remote sensing [19], video
surveillance [20], medical diagnostics and military infor-
mation gathering.

It is noted that most super-resolution methods, to
date, have been designed for monochromatic or color
images. In recent years, because of the potential of super-
resolution reconstruction in the spatial resolution
enhancement of images, scholars have begun to employ
super-resolution reconstruction techniques to improve
the spatial resolution of hyperspectral images. In [21],
Akgun et al. proposed a complicated hyperspectral image
acquisition model, with which a POCS-based super-reso-
lution method was proposed to enhance the resolution of
hyperspectral images. Buttingsrud and Alsberg proposed a
maximum entropy-based hyperspectral image super-
resolution reconstruction method in [22]. Mianji et al.
studied the important problems and challenges in hyper-
spectral image super-resolution reconstruction [23].
However, most of these methods just used synthetic
images, assuming known motion parameters in their
experiments. As an alternative, many researchers have
tackled the image fusion problem of improving the spatial
resolution of a hyperspectral image, through using an
auxiliary HR image. A typical example is the use of a
panchromatic (PAN) image for sharpening hyperspectral
images [1,24]. However, this type of method often
destroys the spectral information, which is extremely
important for the applications of hyperspectral images.

The most direct solution, for hyperspectral image
super-resolution, is to apply super-resolution technology
to every separate spectral band individually, but this has
the following two problems. The first problem is the huge
computational load arising from the high dimensionality
of the hyperspectral images [21], which exists in both
parts of the SRR procedure: motion estimation and image
super-resolution reconstruction. Furthermore, high corre-
lation exists across the spectral bands, so considering
these bands separately will not fully exploit the correla-
tion across them and results in spectral artifacts in the
super-resolved hyperspectral images. In this paper, prin-
cipal component analysis (PCA) is used to reduce the
dimensionality of the hyperspectral image. It is well
known that the first few principal components contain
most of the information of the hyperspectral image, so we
transform the super-resolution reconstruction of the
hyperspectral image to that of its first few principal
components in this paper, thereby greatly reducing the
computational load of the proposed method.

This paper proposes a multi-frame image super-reso-
lution reconstruction algorithm for hyperspectral images.

The contributions of the paper are threefold. Firstly, we
present a simultaneous motion estimation method, utiliz-
ing multiple components of the hyperspectral image to
improve the accuracy of the motion parameters. The
reason for this is that all the bands of the hyperspectral
image convey the same motion information, which pro-
vides more information than a single band. Secondly, we
introduce a MAP-based hyperspectral image super-reso-
lution reconstruction algorithm, in which PCA is
employed to reduce computational load and simulta-
neously remove noise. Experimental results show that
our method not only improves the spatial resolution of
the image effectively, but also preserves spectral informa-
tion well. Thirdly, with the proposed motion estimation
method, we conduct our experiments on real hyperspec-
tral images. The experimental results validate the effec-
tiveness of the proposed method.

The remainder of the paper is organized as follows. In
Section 2, the hyperspectral image SRR observation model
is described. The motion estimation method for hyper-
spectral images is introduced in Section 3. In Section 4,
the MAP estimation-based hyperspectral image SRR algo-
rithm is explained. Experimental results are provided in
Section 5, and Section 6 concludes the paper.

2. Observation model

An image observation model is employed to relate the
desired referenced HR image to the observed LR images.
First, we study the image observation model in the single
band (monochrome) case. Generally, the imaging process
involves warping, followed by blurring and downsam-
pling to generate LR images from the HR image. Let the
underlying HR image be denoted in the vector form by
Z=1[21,22,-,21,N, xI,N, ] » where LNy x LyN is the HR image
size. Letting L, and L, denote the downsampling factors,
in horizontal and vertical directions, respectively, each
observed LR image has the size N; x N,. Thus, the LR
image can be represented as g, = [gkvl,gkvz....,gkv,\,lXNZ]T.
where k=1,2,...,.P, with P being the number of LR images.
Assuming that each observed image is contaminated by
additive noise, the observation model can be represented
as [4,25]

g = DB M;z+n; ()

where M, is the warp matrix with the size of
LiN1L;N; x LiN1L;N,, By represents the camera blur
matrix, also of size L;N{L,N» x LiN1L;N,, D is a N;N; x
LiN1L,N, downsampling matrix, and n; represents the
NN, x 1 noise vector. Extending this monochrome image
observation model to the hyperspectral case, we can
obtain the following model:

gk,r = DBk,er,rZr + ng, (2)

where r=1,2,..,R, with R being the number of spectral
bands. As all the bands of the hyperspectral image convey
the same motion information, the matrix My, is substi-
tuted by matrix M. Assuming that the blurring function
remains the same for all the bands of the low-resolution
hyperspectral observations, the matrix By, will be sub-
stituted by matrix B.
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In this paper, a PCA transform is used to reduce the
computational load of the hyperspectral image SRR pro-
cess. PCA is a widely used dimensionality reduction
technique in data analysis [26]. It computes the low-
dimensional representation of a high-dimensional data
set, which faithfully preserves the covariance structure.
One needs to solve the eigenvalues and eigenvectors of
the covariance matrix. The outputs of PCA are simply the
coordinates of the input patterns in this subspace, using
the directions specified by these eigenvectors as the
principal axes [27].

Corresponding to the observation model relating the
observed low-resolution hyperspectral image and the
desired high-resolution hyperspectral image, we can set
up the following observation model for the PCA compo-
nents of hyperspectral images:

g;(.r = DBM,(Z; +Vk,r 3)

where r=1,2,..,R. Here g, and z, represent the rth
principal component of the kth low-resolution hyperspec-
tral observation and super-resolved hyperspectral image,
respectively. vy, represents the corresponding model
noise of the rth principal component for the kth low-
resolution observation.

It is believed that the first few principal components
contain the most information, and the remaining princi-
pal components contain much less information. There-
fore, the principal components of HSI are divided into
three groups. The first R; components, containing most of
the information of the original HSI, are referred to as
primary components, and the last few components (from
R, to R), with more noise and much less information, as
noise components. The remaining components (from R; to
R,) are referred to as secondary components. As the
primary components contain most of the information of
the hyperspectral image, we only apply the computation-
ally complicated SRR method to the primary components
and employ other resolution enhancement methods,
which are computationally efficient, to the other compo-
nents. Therefore, the value of r in (3) ranges from 1 to R,
forming the observation model for the primary compo-
nents of the hyperspectral image.

3. Motion estimation method

Motion estimation plays an important role in SRR. The
motion estimation method of a single-band (mono-
chrome) image will be introduced first and then extended
to the hyperspectral case. Generally speaking, the rela-
tionship between the rth band image of the kth and the
Ith low-resolution hyperspectral observations can be
expressed as

8irxY) =f1 LOXY) + e 4

where (x,y) denotes the pixel location, g ,(x,y) represents
a pixel in the rth band of frame k, 0 is the motion vector
containing the corresponding motion parameters
between frame k and frame [, fi {1,0)(x,y) represents the
predicted pixel of gy ,(x,y) from frame [ with motion vector
0 and ¢ is the model error. By assuming a six-parameter

affine motion model, f,(1,0)(x,y) can be expressed as
Frr(LO)X,Y) = 8 (a0 +a1x+azy,bo +b1x+byy) 5)

Here 0=(ao,a1,a>,bo,b1,b2)" contains six geometric
model parameters. To solve 0, we employ the least
squares criteria, which has the following minimization
cost function:

E®) = g —fe (1O ©)

The motion vector 0 can be solved with the Gaussian-
Newton optimization method.

Now, consider the motion estimation of a hyperspectral
image. The multiple bands in a hyperspectral image provide
more information than a single band, which leads to
improved accuracy of the motion information [28]. The
underlying premise is, for any hyperspectral image sequence,
the motion between adjacent frames for each band is exactly
the same. In practice, however, when motion estimation is
performed on each band independently, the motion informa-
tion will differ among the bands. A representative motion
field must be chosen for all the bands. Tom and Katsaggelos
studied the motion estimation methods of a color image
sequence, which included a single-band method, vector
mean method, vector median method and simultaneous
motion estimation method with all three bands, and con-
cluded that the simultaneous method performed best [29]. A
computational efficiency problem arises when the simulta-
neous motion estimation method is directly extended to the
hyperspectral image case, because of the high dimensionality
of the hyperspectral image. Therefore, we modify the simul-
taneous motion estimation method with the primary com-
ponents of the hyperspectral image, greatly reducing the
number of spectral bands in the motion estimation process.
Thus, we can get the following minimization cost function:

Ry
E@)= Y (wr x | g, ~fi,(10)]3) %)

r=1

where g; . and f1.+(1,8) represent the rth principal component
of g, (the kth hyperspectral observation) and fi(10) (the
prediction of g, from frame | with motion vector 0). w;
represents the weight of the rth component and is set as
w,=o'"1,0<a<1,r=1,...,Ry, to give a component decaying
effect to the overall cost function. A Gaussian-Newton
optimization method is also used to resolve the motion
vector 0.

4. Image reconstruction algorithm
4.1. PCA-based HSI resolution enhancement

In this paper, all the principal components of the hyper-
spectral image are divided into three groups: primary com-
ponents, secondary components and noise components.
According to the amount of information and noise they
contain, different image resolution enhancement techniques
are selected for the different groups:

(a) Primary components contain most of the information
of the hyperspectral image, which makes the resolution
enhancement of the primary components quite
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important for that of the original hyperspectral image.
Furthermore, the number of spectral bands of the
primary components is usually relatively small; there-
fore, super-resolution reconstruction is utilized for
resolution enhancement of the primary components.

(b) Secondary components contain a small portion of the
information of the hyperspectral image and a certain
amount of noise. As the number of spectral bands of the
secondary components is relatively large, it is time-
consuming to conduct super-resolution reconstruction
for the secondary components. Because of the limited
amount of information, the resolution enhancement of
the secondary components does not have so much
effect as the primary components. Therefore, it is
reasonable to employ efficient cubic interpolation for
the secondary components, to make their size the same
as the super-resolved primary components.

(¢) The amount of information contained in the noise
components is very small and the amount of noise is
quite large. It is natural to conduct a denoising
procedure on the noise components to reduce the
amount of noise contained in the original hyperpsec-
tral image. A 7 x 7 neighborhood median filter is
performed on the noise components because of its
efficiency and effectiveness. After that, cubic inter-
polation is also used to make the size of the noise
components the same as the super-resolved primary
components.

4.2. MAP-based SRR problem formulation

This section briefly introduces the super-resolution
reconstruction method of the primary components. Let
the primary components of the kth low-resolution hyper-

spectral  observation be denoted by g, ={g, ;.
[ [ e [
| PCA | | PCA EEERRR PCA
[ |
Nmse Prlmary Secondary

component component component
Medlanﬁlterand Image it imsikas

interpolation registration ULy PR

SRR

v
Overlapped
components

Inverse PCA

Super-resolved HSI

Fig. 1. Diagram of the whole SRR procedure flow.

8.2 8g s the full set of the P primary components
by g ={g. &, ....8p} and the primary components of the
desired high-resolution hyperspectral image by % =
{z},Z), ...,2; ). The purpose of this is to realize the MAP
estimate of the HR primary components 7/, given the
sequence of low-resolution primary components g'. The
estimate can be computed by

7 = arg max{p|g)) ®)
Applying Bayes’ rule, (8) becomes

P li*)p(z*)}
p(E)
Since p(g') can be considered a constant and can be

eliminated from the optimization problem in (9), it can be
rewritten as

7 =arg max{ )

Z =arg max{(p(g |2)p()} (10)
Using the monotonic logarithm function, it can be

expressed as

# =arg max{logp(g |z)+logp(@)) (11

Assuming the low-resolution observations are inde-
pendent, we obtain

P
7 =arg max{ > " logp(g,|z)+ logp(i*)} (12)
k

Noting that the components of g, and 7' are statisti-
cally independent, respectively, (12) can be written as

Ry

P
7 =arg max{z <Z IOgP(gL,rZ/r)HOgP(Z’r)) } 13)
k

T

Usually, the model noise in (3) is assumed to be AWGN
with variance ¢?, thus the likelihood distribution p(g; ,|z)

Fig. 2. Xiagiao PHI hyperspectral image cube.
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can be given by

o/ / 2
_ |gk,rDBMkzr‘2> (14)

, 1
p(g;gr‘zr) = C_] exp( 202

where C; is a constant.

The prior distribution function p(z,) imposes the spa-
tial constraints on the component. A total variation (TV)
prior model [30,31] is employed here to regularize this
problem, and can be expressed as

1 1
PE) = ¢ exp <7r<z;)) (15)

Table 1
Motion estimation errors.

Methods NMSE Time (s)
Vector mean 0.000434 85
Vector median 0.006860 84
The proposed method 0.000046 31

where C; is also a constant, and f is the temperature
parameter. I'(z;) stands for the standard TV norm, which
looks like:

F(z;):/«/\Vz’r\2+9dxdy (16)
Q

where Q is the two-dimensional image space, and 6 is a
small positive parameter which ensures differentiability
when Vz'=0. Thus, the discrete expression is written as

r@)=3"5" /2> + |z, | +0 (17)
i

where  z.(i,j), =z.(i+1,j)—z.(ij) and z.(ij), =z (ij+1)
—~Z(i,j).

Substituting (14) and (15) into (13), after some manip-
ulation, the super-resolution reconstruction of the pri-
mary components is equivalent to the minimization of the
following regularization problem:

Ry

P
7 =arg min{z (Z | g;“—DBMkz’rHi +Ar(z;)> } (18)
k

T

Fig. 3. Experimental results of the Xiagiao remote sensing hyperspectral image (R: 48, G: 31, B: 11): (a) original hyperspectral image, (b) cubic
interpolation, (¢) Gram-Schmidt fusion, (d) PC fusion, (e) maximum entropy SRR method and (f) the proposed SRR method.
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The parameter A is the regularization parameter, of the cost function shown in (18) is nonlinear with
which controls the contribution of the prior term relative respect to 7, the lagged diffusivity fixed-point iteration
to the data fidelity term. As the Euler-Lagrange equations introduced in [32] is utilized. Then, a gradient descent

a b C

Fig. 4. (a-f) Detailed regions cropped from Fig. 3(a)-(f), respectively: (a) original hyperspectral image, (b) cubic interpolation, (c) Gram-Schmidt fusion,
(d) PC fusion, (e) maximum entropy SRR method and (f) the proposed SRR method.

...

Fig. 5. (a-f) Detailed regions cropped from Fig. 3(a)-(f), respectively: (a) original hyperspectral image, (b) cubic interpolation, (c) Gram-Schmidt fusion,
(d) PC fusion, (e) maximum entropy SRR method and (f) the proposed SRR method.
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method is used to solve the cost function. The matrices D,
B, M, and their corresponding transposes are interpreted
as direct image operators in the computation process
[20,33]. Thus, it is not necessary to generate large
matrices, and the proposed algorithm can be implemen-
ted efficiently.

4.3. Procedure flow

The overall procedure flow of the SRR for hyperspectral
images can be implemented by the following steps:

Step (1): Apply PCA transforms to each hyperspectral

image, respectively, and obtain their corresponding
principal components.
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Step (2): Determine parameters R; and R, and divide the
principal components into three groups: primary com-
ponents, secondary components and noise components.
Step (3): Perform simultaneous motion estimation
with the primary components to obtain the motion
field between the hyperspectral image sequences.
Step (4): Apply super-resolution reconstruction to the
primary components and obtain the corresponding
super-resolved primary components.

Step (5): Employ cubic interpolation to the secondary
components with the same size as the super-resolved
primary components.

Step (6): Conduct a 7 x 7 neighborhood median filter
on the noise components to remove noise in the
hyperspectral image, and then interpolate to the same
size as the super-resolved primary components.

Spectral Profile
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100 | .
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Fig. 6. Spectral curvatures of the typically shown point in Fig. 3(a): (a) original hyperspectral image, (b) cubic interpolation, (c) Gram-Schmidt fusion,
(d) PC fusion, (e) maximum entropy SRR method and (f) the proposed SRR method.
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Step (7): Apply the inverse PCA transform to the
overlap of the super-resolved primary components,
interpolated secondary components and noise
component, obtaining the super-resolved hyperspec-
tral images.

A block diagram of the whole procedure flow is shown
in Fig. 1.

5. Experimental results
5.1. Experimental setup

Four different sets of experiments were conducted
with the proposed algorithm. The first one is a simulated
experiment for a hyperspectral remote sensing image
with known motion parameters, and the last three are
real experiments for hyperspectral image sequences with
unknown motion parameters, which are estimated with
the proposed motion estimation method. For the simu-
lated experiment, the following three quantitative mea-
sures were employed to evaluate the proposed SRR
algorithm for hyperspectral images:

_ a2l
MSE(r) = LN, x LN, 17)
2
PSNR(r) =10 x log (255 x L‘I\f‘ - L2N2> (18)
|2r=2r
SAM(i) = arccos ((uz(,)uz(,)>> (19)
Itz 2 x Uz 2

where z, and 2, are the rth band of the original and
reconstructed high-resolution hyperspectral images,
respectively, and L;N; x LN, denotes the dimension of
one band of the high-resolution hyperspectral image.
MSE(r) and PSNR(r) denote the mean squared error
(MSE) and peak signal noise ratio (PSNR) for band r,
respectively, so the global MSE and PSNR are computed
by averaging over all the bands. Let u;) and u,; denote
the spectral vector of the ith pixel of the original and
reconstructed high-resolution hyperspectral images,
respectively, so SAM(i) represents the spectral angle
mapper (SAM) of the ith pixel, and the global SAM is
computed by averaging over the whole image. The reg-
ularization parameter selection method in this paper is
that several different regularization parameters are
employed and the parameter value corresponding to the
best result is chosen.

5.2. Simulation results

The hyperspectral image used in this experiment is a
remote sensing image collected with an airborne imaging
spectrometer (PHI) from the Xiaqiao test site. A total of 56
bands of the PHI image (of size 346 x 512) were utilized,
and the spectral ranges were from 440 nm to 854 nm.
Fig. 2 shows the original PHI hyperspectral image cube.
The LR hyperspectral image sequence was obtained by the
following steps: (1) the original hyperspectral image was

shifted, in both the horizontal and vertical directions, to
produce four shifted hyperspectral images; (2) the
sequence was convolved with a Gaussian smooth filter
PSF of size 3 x 3 with variance equal to 0.5; (3) it was then
downsampled in both the horizontal and vertical direc-
tions by the factor of two; (4) lastly, zero-mean Gaussian-
noise was added to the sequence. In order to compare our
method with other panchromatic/hyperspectral image
fusion methods, one high-resolution panchromatic image
was created by spectrally integrating over the entire
spectral range with the original hyperspectral image [1].

Firstly, the performance of the presented simultaneous
motion estimation method in Section 3 is validated. We
implement the simultaneous motion estimation method
using the primary components of the synthetic hyperspectral

60 T T T T T

——PC
0 |——cs

—— Cubic
—— Proposed

40 A
—— Maximum

0 4

MSE

20} B

Band number
Fig. 7. MSE evaluation of each band of the experimental results versus

the band number.

Table 2
Quantitative evaluation results of the experimental images.

Cubic Gram- PC Maximum The
interpolation Schmidt  fusion entropy proposed
fusion method SRR
method
MSE 15.42 30.13 2227 6.12 4.62
PSNR 36.25 33.34 34.65 40.26 41.48
SAM  1.83 2.29 212 142 1.38

Table 3
Land-cover classes and associated numbers of
pixels used in this classification procedure.

Class name Number of labeled
samples
Road 77
Corn 81
Vegetable 42
Grass 46
Water 66
Soil 76
Total number of 388

labeled samples
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images. The corresponding parameters are set as: R;y=3 and the errors and time span of the three methods. It is clear that
R,=10. In this part, the vector mean and vector median, after the proposed method achieves the lowest NMSE error and
the separate motion estimation of each band, were selected uses the shortest time span, the reasons for which are
as the benchmark of the presented method. Table 1 shows twofold. First, the primary components contain most of the

I Road

[ Corn

[ Vegetable
Grass

" Water

B soil

Fig. 8. SVM supervised classification results of the Xiagiao remote sensing hyperspectral image: (a) original hyperspectral image, (b) cubic interpolation,
(¢) Gram-Schmidt fusion and (d) PC fusion.
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information of the hyperspectral image and provide more
information than a single band, which supports improved
accuracy of the motion field. Second, the number of bands of
the primary components is just three, which is much smaller
than the number of spectral bands of the original hyperspec-
tral image, and, therefore, greatly reduces the computational
load of the motion estimation process.

The next issue is the evaluation and analysis of the
reconstructed images, which are shown in Figs. 3 and 4 with
a color composite of 48(R), 31(G) and 11(B). The experimen-
tal results of the cubic interpolation, Gram-Schmidt fusion,
PC fusion and maximum entropy-based hyperspectral image
super-resolution reconstruction method in [22] are used as
benchmarks for the proposed algorithm. The original hyper-
spectral image and cubic interpolation results are shown in
Fig. 3(a) and (b), respectively. Fig. 3(c) and (d) are the Gram-
Schmidt fusion and principal component (PC) fusion results,
respectively. Fig. 3(e) and (f) illustrate the results of the
maximum entropy SRR method and the proposed SRR
algorithm. The resolution enhancement factor is two, in both
the horizontal and vertical directions. The regularization
parameter is set as 1=04. We analyze the experimental

Table 4
Quantitative evaluation results of the classification images.

2091

results from both the spatial and spectral aspects. To facilitate
the spatial comparison, detailed regions cropped from
Fig. 3(a)-(f) are shown in Fig. 4(a)-(f), respectively. Evidently,
the spatial resolution of both the fusion results and the SRR
results are significantly improved, in comparison with the
interpolation results.

The spectral information preservation is the other
issue at hand. Another set of detailed regions, cropped
from Fig. 3(a)-(f), are shown in Fig. 5(a)-(f), respectively.
It is clear that the color of the fusion results changes a lot
compared with the original hyperspectral image, that is to
say, the spectral information is destroyed in the image
fusion process. To facilitate the comparison of the spectral
information, we select one typical point, as shown in
Fig. 3(a), and draw the spectral curvatures of the experi-
mental results in Fig. 6. From the figures, it is clearly
observed that the spectral curvatures of the fusion meth-
ods change a lot, when compared with the original
hyperspectral image. The spectral curvatures of the cubic
interpolation method and the maximum entropy SRR
method change a little, while the spectral curvature of
the proposed SRR method is almost the same as that of

Original image  Cubic interpolation =~ Gram-Schmidt fusion  PC fusion = Maximum entropy method  The proposed SRR method
OA 90.23% 89.39% 64.36% 73.33% 90.07% 90.17%
Kappa 0.8700 0.8590 0.5227 0.6451 0.8678 0.8692
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Fig. 9. Experimental results of the letter paper sequence (R:1, G:23, B:46): (a) LR image, (b) bilinear interpolation, (c) cubic interpolation, (d) maximum

entropy SRR method and (e) the proposed SRR method.
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Fig. 10. (a-d) Detailed regions cropped from Fig. 9(b)-(e), respectively (R: 1, G: 23, B: 46): (a) bilinear interpolation, (b) cubic interpolation, (c) maximum
entropy SRR method and (d) the proposed SRR method.

a

Fig. 11. Experimental results of the visual chart sequence (R: 40, G: 31, B: 11): (a) LR image, (b) bilinear interpolation, (c) cubic interpolation,

(d) maximum entropy SRR method and (e) the proposed SRR method.
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the original hyperspectral image. To further compare the
spectral preservation properties of the different methods,
Fig. 7 is given to show the MSE evaluation of each band of
the experimental results versus the band number. It is
observed that the SRR methods have much lower MSE
values on all the bands, and the proposed method has
better results than the maximum entropy SRR method on
most bands, which further validates the excellent spectral
preservation property of the proposed method.

Table 2 lists the quantitative evaluation results of the
experimental images using MSE, PSNR and SAM, respec-
tively. Generally speaking, it is clearly observed that the
SRR methods achieve better quantitative evaluation
results than the fusion methods and the interpolation
method, in terms of all the objective quantitative mea-
sures. The proposed SRR method definitely achieves a
slightly better evaluation result than the maximum
entropy SRR method. Although the image fusion methods
obtain a higher spatial resolution than the cubic inter-
polation method, their quantitative evaluation results are
worse than those of the cubic interpolation method. The
main reason for this is that the spectral information is
destroyed in the fusion process. From all the above
comparisons of the experimental results, it can be clearly

-.

seen that the proposed method not only enhances the
spatial resolution of the hyperspectral image effectively,
but also preserves spectral properties very well. It is
concluded that the proposed SSR method provides a
better result than the other resolution enhancement
methods, in terms of both spatial and spectral aspects.
In order to further validate the effectiveness of the
proposed hyperspectral image SRR method, a classifica-
tion procedure was conducted on the resolution-
enhanced hyperspectral images. Six representative
classes, namely, road, corn, vegetable, grass, water, and
soil, were considered. Table 3 gives the number of labeled
samples for each class obtained from the original hyper-
spectral image. All 56 bands were used for classification.
Fig. 8 shows the support vector machine (SVM) super-
vised classification result of the Xiagiao PHI image. To
evaluate the classification accuracy, a test field map is
shown in Fig. 8(g), based on the ground reference data. The
classification accuracies for the six image results are given
in Table 4. From the table, it is observed that the image
fusion result has a poor classification result, the reason for
which is that the spectral properties are destroyed in the
image fusion process. Because of the excellent spectral
preservation ability, the proposed hyperspectral image

Fig. 12. (a-d) Detailed regions cropped from Fig. 11(b)-(e), respectively (R: 40, G: 31, B: 11): (a) bilinear interpolation, (b) cubic interpolation,

(c) maximum entropy SRR method and (d) the proposed SRR method.
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SRR method has the highest classification accuracy, which
approximates to the classification result of the original
hyperspectral image.

5.3. Real results

To further illustrate the performance of the proposed
method, it was tested on three real data sets. The real
hyperspectral image sequences used in these three experi-
ments were collected using the Nuance-NIR imaging spectro-
meter. The acquired hyperspectral images have 46 bands,
with spectral ranges from 650 nm to 1100 nm, with a 10 nm
spectral interval. As there is no real high-resolution panchro-
matic image, image fusion experiments cannot be imple-
mented here. We conduct the maximum entropy SRR
method with the motion parameters between the real
hyperspectral images estimated using the proposed motion
estimation method. We compare the results of the proposed
SRR method with those of the maximum entropy SRR
method and the interpolation methods via visual evaluation.

5.3.1. Letter paper sequence

In the first real image experiment, we select the letter
paper hyperspectral image sequence. Seven hyperspectral
images (of size 220 x 100) are used in the experiment to
obtain a resolution enhancement factor of two. The fourth
frame, shown in Fig. 9(a) with a color composite of 1(R),
23(G) and 46(B), is selected as the reference frame. The
camera blur kernel is assumed to be a 3 x 3 Gaussian kernel
with variance equal to 0.5 for all the bands. The correspond-
ing parameters for SRR are set as: R;=3, R,=10 and /=0.42.
Fig. 9(b)-(e) shows the results of bilinear interpolation, the
cubic interpolation, the maximum entropy SRR method and

the proposed SRR method, respectively. To facilitate a spatial
comparison, detailed regions cropped from Fig. 9(b)-(e) are
shown in Fig. 10(a)—(d), respectively. By visual comparison, it
is observed that the results of the proposed SRR method are
clearer than those of the single-frame interpolation methods
and the maximum entropy SRR method. Furthermore, as the
noise components are filled with zeros in the reconstruction
process, the proposed SRR result is less noisy.

5.3.2. Visual chart sequence

Our second real experiment uses the visual chart
sequence. Five LR hyperspectral observations of size
140 x 140 are used with a resolution enhancement factor
of two. The third frame is selected as the reference frame,
which is shown in Fig. 11(a) with a color composite of 40(R),
31(G) and 11(B). The blur kernel is assumed to be a 3 x 3
Gaussian kernel with variance equal to 0.5. The correspond-
ing parameters are set as Ry=3, R,=10 and A=045. The
results of bilinear interpolation, cubic interpolation, the
maximum entropy SRR method and the proposed SRR
method are given in Fig. 11(b)-(e), respectively. Detailed
regions cropped from Fig. 11(b)-(e) are shown in Fig. 12
(a)-(d), respectively. It is clearly seen that the proposed SRR
result is more desirable than those of the other methods.

5.3.3. Building sequence

Our third real hyperspectral image resolution
enhancement experiment uses four building images, with
the first frame as the reference frame shown in Fig. 13(a).
The resolution enhancement factor is set as two. The
corresponding parameters are set as R;=3, R,=10 and
A=0.45. Fig. 13(b)-(e) shows the results of bilinear inter-
polation, cubic interpolation, the maximum entropy SRR

Fig. 13. Experimental results of the building sequence (R:1, G:11, B:31): (a) LR image, (b) bilinear interpolation, (c) cubic interpolation, (d) maximum

entropy method and (e) the proposed SRR method.
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Fig. 14. (a-d) Detailed regions cropped from Fig. 13(b)-(e), respectively (R: 1, G: 11, B: 31): (a) bilinear interpolation, (b) cubic interpolation,

(c) maximum entropy SRR method and (d) the proposed SRR method.

method and the proposed SRR method, respectively.
Detailed regions cropped from Fig. 13(b)-(e) are shown
in Fig. 14(a)-(d), respectively. It is clear that the proposed
method achieves better results than the other hyperspec-
tral image resolution enhancement methods.

6. Conclusions

This paper has proposed a multi-frame super-resolution
algorithm for real hyperspectral images, in which PCA is
utilized in both the motion estimation and image reconstruc-
tion processes. In the motion estimation counterpart, primary
components, which contain most of the information of a
hyperspectral image, are used, supporting high accuracy of
the motion estimation process. In the image reconstruction
counterpart, different image resolution enhancement techni-
ques are applied to different groups of components, accord-
ing to the amount of information contained in the principal
components, in order to simultaneously reduce computa-
tional load and remove hyperspectral image noise. The
proposed algorithm was tested on different sets of synthetic
images and real hyperspectral image sequences. Experimen-
tal results confirmed that the proposed algorithm outper-
forms interpolation methods and image fusion methods, in

terms of both the quantitative measurements and visual
evaluation.

However, the proposed algorithm still has room for
improvement. For example, the algorithm could be
extended to spaceborne remote sensing hyperspectral
images, which is more complicated and difficult because
of the complicated remote sensing imaging conditions.
These problems are the main focus of our future work.
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